Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0295053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033133

RESUMO

The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Células Endoteliais/metabolismo , Técnicas de Cocultura , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Endotélio Vascular/metabolismo , Adesão Celular
2.
Microb Ecol ; 86(4): 2211-2230, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37280438

RESUMO

Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.


Assuntos
Inoculantes Agrícolas , Solo , Solo/química , Carbono , Agricultura/métodos , Microbiologia do Solo
3.
mSphere ; 8(2): e0052622, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36847534

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that can play critical roles in regulating various cellular processes, including during many parasitic infections. Here, we report a regulatory role for miR-34c-3p in cAMP-independent regulation of host cell protein kinase A (PKA) activity in Theileria annulata-infected bovine leukocytes. We identified prkar2b (cAMP-dependent protein kinase A type II-beta regulatory subunit) as a novel miR-34c-3p target gene and demonstrate how infection-induced upregulation of miR-34c-3p repressed PRKAR2B expression to increase PKA activity. As a result, the disseminating tumorlike phenotype of T. annulata-transformed macrophages is enhanced. Finally, we extend our observations to Plasmodium falciparum-parasitized red blood cells, where infection-induced augmentation in miR-34c-3p levels led to a drop in the amount of prkar2b mRNA and increased PKA activity. Collectively, our findings represent a novel cAMP-independent way of regulating host cell PKA activity in infections by Theileria and Plasmodium parasites. IMPORTANCE Small microRNA levels are altered in many diseases, including those caused by parasites. Here, we describe how infection by two important animal and human parasites, Theileria annulata and Plasmodium falciparum, induce changes in infected host cell miR-34c-3p levels to regulate host cell PKA kinase activity by targeting mammalian prkar2b. Infection-induced changes in miR-34c-3p levels provide a novel epigenetic mechanism for regulating host cell PKA activity independent of fluxes in cAMP to both aggravate tumor dissemination and improve parasite fitness.


Assuntos
MicroRNAs , Theileria annulata , Humanos , Bovinos , Animais , Theileria annulata/genética , Theileria annulata/metabolismo , MicroRNAs/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mamíferos , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico
4.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724266

RESUMO

AIMS: Although phosphate solubilizing bacteria (PSB) have been globally reported to improve soil phosphorus (P) availability and plant growth, technical gaps such as the lack of an ideal screening approach, is yet to be addressed. The potential of non-halo-forming PSB remains underestimated because of the currently adopted screening protocols that exclusively consider halo-forming and PSB with high phosphorus solubilization (PS) capacities. Yet, caution should be taken to properly assess PSB with contrasting PS rates regardless of the presence or absence of the solubilization halo. METHODS AND RESULTS: This study sought to examine the PS rate and plant growth promotion ability of 12 PSB categorized as high PSB (H-PSB), medium PSB (M-PSB), and low PSB (L-PSB) based on their PS rates of rock phosphate (RP). The non-halo-forming PSB Arthrobacter pascens was categorized as H-PSB, which might have been eliminated during the classical screening process. In addition, induction of organic acids and phosphatase activity in rhizosphere soils by H-, M-, and L-PSB was proportional to increased wheat P content by 143.22, 154.21, and 77.76 mg P g-1 compared to uninoculated plants (18.1 mg P g-1). CONCLUSIONS: Isolates considered as M- and L-PSB could positively influence wheat above-ground physiology and root traits as high as H-PSB. In addition, non-halo-forming PSB revealed significant PS rates along with positive effects on plant growth as high as halo-forming PSB.


Assuntos
Inoculantes Agrícolas , Fosfatos , Fósforo , Bactérias , Solo , Triticum
5.
Front Microbiol ; 13: 815890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756012

RESUMO

The North American Great Plains cover a large area of the Nearctic ecozone, and an important part of this biome is semiarid. The sustainable intensification of agriculture that is necessary to produce food for an ever-increasing world population requires knowledge of the taxonomic and functional structure of the soil microbial community. In this study, we investigated the influence of soil depth on the composition and functions of the microbial communities hosted in agricultural soils of a semiarid agroecosystem, using metagenomic profiling, and compared them to changes in soil chemical and physical properties. Shotgun sequencing was used to determine the composition and functions of the soil microbial community of 45 soil samples from three soil depths (0-15 cm, 15-30 cm, and 30-60 cm) under different agricultural land use types (native prairie, seeded prairie, and cropland) in southwest Saskatchewan. Analysis of community composition revealed the declining abundance of phyla Verrucomicrobia, Bacteroidetes, Chlorophyta, Bacillariophyta, and Acidobacteria with soil depth, whereas the abundance of phyla Ascomycota, Nitrospirae, Planctomycetes, and Cyanobacteria increased with soil depth. Soil functional genes related to nucleosides and nucleotides, phosphorus (P) metabolism, cell division and cell cycle, amino acids and derivatives, membrane transport, and fatty acids were particularly abundant at 30-60 cm. In contrast, functional genes related to DNA and RNA metabolism, metabolism of nitrogen, sulfur and carbohydrates, and stress response were more abundant in the top soil depth. The RDA analysis of functional genes and soil physico-chemical properties revealed a positive correlation between phages and soil organic P concentrations. In the rooting zone of this semiarid agroecosystem, soil microbes express variable structural patterns of taxonomic and functional diversity at different soil depths. This study shows that the soil microbial community is structured by soil depth and physicochemical properties, with the middle soil depth being an intermediate transition zone with a higher taxonomic diversity. Our results suggest the co-existence of various microbial phyla adapted to upper and lower soil depths in an intermediate-depth transition zone.

6.
Microbiol Res ; 262: 127094, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35749891

RESUMO

Rhizosphere microbes significantly enhance phosphorus (P) availability from a variety of unavailable P pools in agricultural soils. However, little is known about the contribution of root-associated microorganisms, notably P solubilizing bacteria (PSB), to enhance the use of polyphosphate (PolyP) fertilizers as well as the key mechanisms involved. This study assesses the ability of four PSB (Bacillus siamensis, Rahnella aceris, Pantoea hericii, Bacillus paramycoides) and their consortium (Cs) to enhance the release rate of available P from two types of PolyP ("PolyB" and "PolyC") with a focus on the key role of phosphatase enzyme activities and organic acids production. Wheat growth performance and P acquisition efficiency were evaluated in response to co-application of PSB and PolyP. Results showed that inoculation with PSB, notably Cs, significantly enhanced available P from PolyC, PolyB and tri-calcium P. Increased available P in response to inoculation with PSB significantly correlated with medium acidification, organic acids production (notably glycolic acid) and induced activities of acid phosphatase and pyrophosphatase. In planta, the co-application of PSB-PolyP improved wheat plant biomass, root growth and P acquisition, with best results obtained from Cs-PolyP co-application as compared to uninoculated and unfertilized plants. At seedling stage, the co-application of Cs-PolyP (PolyB and PolyC) enhanced root hairs length (125 % and 131 %), root length (26 % and 37 %) and root inorganic P (Pi) content (160 % and 182 %), respectively compared to uninoculated plants. Similarly, at tillering stage, plant biomass (35 % and 47 %), Pi content (43 % and 253 %), P translocation (215 % and 315 %) and soil phosphatases (213 % and 219 %) significantly improved under PolyB and PolyC application, respectively. Findings from this study demonstrate the key role of PSB to enhance the use of PolyP through production of organic acids and phosphatases, exhibiting differential traits patterns between the two PolyP. Improved wheat growth and root P acquisition in response to PSB-PolyP co-application can be attributed to induced rhizosphere processes leading to enhanced available P taken up by roots.


Assuntos
Fosfatos , Triticum , Bactérias , Monoéster Fosfórico Hidrolases , Polifosfatos , Rizosfera , Solo , Triticum/microbiologia
7.
Microbiol Res ; 252: 126842, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438221

RESUMO

Although research on plant growth promoting bacteria began in the 1950s, basic and applied research on bacteria improving use of phosphorus (P) continues to be a priority among many agricultural research institutions. Ultimately, identifying agriculturally beneficial microbes, notably P solubilizing bacteria (PSB), that enhance the efficient use of P supports more sustainable cropping systems and the judicious use of mineral nutrients. In parallel, there is more attention on improving crop root P acquisition of existing soil P pools as well as by increasing the proportion of fertilizer P that is taken up by crops. Today, new lines of research are emerging to investigate the co-optimization of PSB-fertilizer-crop root processes for improved P efficiency and agricultural performance. In this review, we compile and summarize available findings on the beneficial effects of PSB on crop production with a focus on crop P acquisition via root system responses at the structural, functional and transcriptional levels. We discuss the current state of knowledge on the mechanisms of PSB-mediated P availability, both soil- and root-associated, as well as crop uptake via P solubilization, mineralization and mobilization, mainly through the production of organic acids and P-hydrolyzing enzymes, and effects on phytohormone signaling for crop root developement. The systematic changes caused by PSB on crop roots are discussed and contextualized within promising functional trait-based frameworks. We also detail agronomic profitability of P (mineral and organic) and PSB co-application, in amended soils and inoculated crops, establishing the connection between the influence of PSB on agroecosystem production and the impact of P fertilization on microbial diversity and crop functional traits for P acquisition.


Assuntos
Bactérias , Produtos Agrícolas , Interações entre Hospedeiro e Microrganismos , Fósforo , Bactérias/classificação , Bactérias/metabolismo , Produtos Agrícolas/microbiologia , Fertilizantes , Interações entre Hospedeiro e Microrganismos/fisiologia , Minerais/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Solo/química
8.
Front Plant Sci ; 11: 979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765544

RESUMO

Limited P availability in several agricultural areas is one of the key challenges facing current agriculture. Exploiting P-solubilizing bacteria (PSB) has been an emerging bio-solution for a higher rhizosphere P-availability, meanwhile the above- and below-ground interactions that PSB would trigger remain unclear over plant growing stages. We hypothesized that PSB effects on plant growth may be greater on root traits that positively links with aboveground physiology more than the commonly believed rhizosphere P bio-solubilization. In this study, five contrasting PSB (Pseudomonas spp.) isolates (low "PSB1", moderate "PSB2 and PSB4" and high "PSB3 and PSB5" P-solubilizing capacity "PSC") were used to investigate above- and below-ground responses in wheat fertilized with rock P (RP) under controlled conditions. Our findings show that all PSB isolates increased wheat root traits, particularly PSB5 which increased root biomass and PSB3 that had greater effect on root diameter in 7-, 15- and 42-day old plants. The length, surface and volume of roots significantly increased along with higher rhizosphere available P in 15- and 42-day old plants inoculated with PSB4 and PSB2. Shoot biomass significantly increased with both PSB2 and PSB5. Root and shoot physiology significantly improved with PSB1 (lowest PSC) and PSB4 (moderate PSC), notably shoot total P (78.38%) and root phosphatase activity (390%). Moreover, nutrients acquisition and chlorophyll content increased in inoculated plants and was stimulated (PSB2, PSB4) more than rhizosphere P-solubilization, which was also revealed by the significant above- and below-ground inter-correlations, mainly chlorophyll and both total (R = 0.75, p = 0.001**) and intracellular (R = 0.7, p = 0.000114*) P contents. These findings demonstrate the necessity to timely monitor the plant-rhizosphere continuum responses, which may be a relevant approach to accurately evaluate PSB through considering below- and above-ground relationships; thus enabling unbiased interpretations prior to field applications.

9.
Cell Microbiol ; 22(12): e13255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32830401

RESUMO

Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor/fisiologia , Granzimas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Leucócitos/parasitologia , Linfoma de Células B/genética , Macrófagos/parasitologia , Theileria annulata/genética , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Linfoma de Células B/parasitologia , Camundongos , Theileria annulata/patogenicidade
11.
PLoS Pathog ; 14(3): e1006942, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570727

RESUMO

Theileria annulata is an apicomplexan parasite that infects and transforms bovine macrophages that disseminate throughout the animal causing a leukaemia-like disease called tropical theileriosis. Using deep RNAseq of T. annulata-infected B cells and macrophages we identify a set of microRNAs induced by infection, whose expression diminishes upon loss of the hyper-disseminating phenotype of virulent transformed macrophages. We describe how infection-induced upregulation of miR-126-5p ablates JIP-2 expression to release cytosolic JNK to translocate to the nucleus and trans-activate AP-1-driven transcription of mmp9 to promote tumour dissemination. In non-disseminating attenuated macrophages miR-126-5p levels drop, JIP-2 levels increase, JNK1 is retained in the cytosol leading to decreased c-Jun phosphorylation and dampened AP-1-driven mmp9 transcription. We show that variation in miR-126-5p levels depends on the tyrosine phosphorylation status of AGO2 that is regulated by Grb2-recruitment of PTP1B. In attenuated macrophages Grb2 levels drop resulting in less PTP1B recruitment, greater AGO2 phosphorylation, less miR-126-5p associated with AGO2 and a consequent rise in JIP-2 levels. Changes in miR-126-5p levels therefore, underpin both the virulent hyper-dissemination and the attenuated dissemination of T. annulata-infected macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MAP Quinase Quinase 4/metabolismo , Macrófagos/microbiologia , MicroRNAs/genética , Theileriose/microbiologia , Fator de Transcrição AP-1/metabolismo , Virulência/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Bovinos , Células Cultivadas , MAP Quinase Quinase 4/genética , Macrófagos/metabolismo , Theileria annulata/patogenicidade , Theileriose/genética , Theileriose/metabolismo , Fator de Transcrição AP-1/genética
12.
Nat Genet ; 50(2): 307-316, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358649

RESUMO

To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/uso terapêutico , DNA Bacteriano/análise , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Variação Genética , Estudo de Associação Genômica Ampla , Geografia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
Proc Natl Acad Sci U S A ; 113(26): 7231-6, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303038

RESUMO

The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.


Assuntos
Proteínas de Transporte/genética , Eritrócitos/parasitologia , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidade , Proteínas de Protozoários/genética , Animais , Células Cultivadas , Humanos , Macaca fascicularis , Macaca mulatta , Malária , Polimorfismo de Nucleotídeo Único , Zoonoses
14.
PLoS Pathog ; 11(11): e1005273, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565797

RESUMO

Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.


Assuntos
Divisão Celular/fisiologia , Ciclinas/metabolismo , Malária/parasitologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Culicidae , Ciclinas/genética , Feminino , Humanos , Camundongos , Oocistos , Proteínas de Protozoários/genética , Esporozoítos/crescimento & desenvolvimento
15.
Genome Announc ; 3(5)2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472828

RESUMO

The emergence and spread of multidrug-resistant (MDR) bacteria have been regarded as major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an MDR Stenotrophomonas maltophilia strain isolated in 2014 from King Abdulla Medical City, Makkah, Saudi Arabia.

16.
Proc Natl Acad Sci U S A ; 112(18): 5767-72, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902514

RESUMO

Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes--notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium--highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis--life after the organelle.


Assuntos
Dinoflagellida/fisiologia , Plastídeos/genética , Simbiose/genética , Trifosfato de Adenosina/metabolismo , Aminoácido Oxirredutases/metabolismo , Animais , Núcleo Celular/metabolismo , Crustáceos , Citosol/metabolismo , Dinoflagellida/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Parasitos , Fotossíntese , Filogenia , Plasmodium , RNA/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...